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Lecture 8

The Approximation Problem

Least squares approximations

Pade Approximations

Numerical Optimization

Classical Approximations



Collocation

Collocation is the fitting of a function to a set of points (or 

measuremetns) so that the functin agrees wth the sample 

at each point in the set.

The function that is of interest for using collocation when addressing the 

approximation problem is  ( )2ω
A

H

x

f(x)

x
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Collocating 

Function
Often consider critically constrained functions
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Collocation
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Collocation Observations

Fitting an approximating function to a set of data or points 
(collocation points)
– Closed-form matrix solution for fitting to a rational fraction in ω2

– Can be useful when somewhat nonstandard approximations are 
required

– Quite sensitive to collocation points

– Although function is critically constrained, since collocation 
points are variables, highly under constrained as an optimization 
approach

– Although fit will be perfect at collocation points, significant 
deviation can occur close to collocation points

– Inverse mapping to TA(s) may not exist

– Solution may not exist at specified collocation points

Review from Last Time



Collocation 

What is the major contributor to the limitations observed 

with the collocation approach? 

• Totally dependent upon the value of the desired response at a small but 

finite set of points   (no consideration for anything else)

• Highly dependent upon value of approximating function at a single point or 

at a small number of points

• Highly dependent upon which points are chosen

Review from Last Time



The Approximation Problem

1

1

ω

( )LPT j

• Magnitude Squared Approximating Functions

• Inverse Transform

• Collocation

• Least Squares (Cost function minimizations)

• Pade Approximations

• Other Analytical Optimization

• Numerical Optimization

• Canonical Approximations
→Butterworth (BW)

→Chebyschev (CC)

→Elliptic

→Bessel

→Thompson

Approach we will follow:
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( ) ( )2

A AH ω T s→
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Cost Function Minimizations
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( ) ( )i D i A iε  = H ω  - H ω

Goal is to minimize some metrics associated with εi at a large number of points
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wi a weighting function

Some possible cost functions

• Reduces emphasis on individual points

• Some much better than others from performance viewpoint

• Some much better than others from computation viewpoint

• Realization of no concern how approximation obtained, only of how good it is !
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Termed “Lm norm” if exponent is m and weight is 1
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Least Squares Approximation
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( ) ( )i D i A iε  = H ω  - H ω

Least Mean Square (LMS) based cost functions have minimums that can be 

analytically determined for some useful classes of approximating functions 

HA(ω2)

N
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3 i i
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C  = w ε

wi a weighting function

• Most of the other metrics listed on previous slide are not easy to get closed-

form expressions for minimums though computer optimization can be used: 

may be plagued by multiple local minimums but they may still be useful 

Consider:

• Often termed a L2 norm

• Minimizing L1 norm often provides better approximation but no closed-form 

analytical expressions

If exponent in cost function is 2, termed “least squares” cost function

Review from Last Time



Regression Analysis Review
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Consider an nth order polynomial in x

Consider N samples of a function  ( )F x
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Define the summed square difference cost function as
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N 2
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where the sampling coordinate variables are
N

i i=1
X = x

A standard regression analysis can be used to minimize C with respect 

to {a0,a1, …an}

To do this, take the n+1 partials of C  wrt the ai variables
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Regression Analysis Review
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-1A X F= •

• Closed form solution

• Requires inversion of a (n+1) dimensional square matrix

• Not highly sensitive to any single measurement

• Widely used for fitting a set of data to a polynomial model

• Points need not be uniformly distributed

• Adding weights does not complicate solution

Observations about  Regression Analysis:

This analysis was restricted to a polynomial – will see how applicable 

it is to a rational fraction !
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Least Squares Approximations of Transfer Functions
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|T(jω)| is highly nonlinear in <ak> and <bk>



Least Squares Approximations of Transfer Functions

( )

m
i

i

i=0
WLOG b =10n

i

i

i=0

a s

T s  =  

b s





( )

( ) ( )

( ) ( )

2 2

2 2

m m
i ii i

i i

i=0 i=0
i odd i even

n n
i ii i

i i

i=0 i=0
i odd i even

-1 aω -1 aω

T j  =   

-1 bω -1 bω



   
   +
   
      

   
   +
   
      

 

 

( ) ( )( )
N 2

k k

k=1

C = T jω -T ω

Consider the natural cost function on a set of N points
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<ak> and <bk>

Closed form solution for optimal values of                              does not exist <ak> and <bk>



Least Squares Approximations of Transfer Functions
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Consider the cost function
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What about the sets of equations
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Rewriting the cost function
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is linear in <ck>
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is highly nonlinear in <dk>

Closed form solution for optimal values of                              does not exist <ck> and <dk>



Least Squares Approximations of Transfer Functions
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is highly nonlinear in <dk>

if               is fixed, optimal value of          can be easily obtained 
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<dk> <ck>

if  poles of HA(ω2) are fixed, optimal value of zeros of HA(ω2) can be easily obtained 

But

equivalently,

Is this observation useful?



Least Squares Approximations of Transfer Functions
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<dk><ck>

if  poles of HA(ω2) are fixed, optimal value of zeros of HA(ω2) can be easily obtained 

Are these observations useful?
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if  poles of HA(ω2) are fixed in denominator of C, the partials of C wrt both         and

are linear in             and <dk><ck>

• Several optimization approaches can be derived from these observations

• Some may provide a LMS optimization of HA(ω2)

• No guarantee that inverse mapping exists

• Some may provide a good approximation even though not truly LMS

• Others may not be useful



Least Squares Approximations of Transfer Functions
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Possible uses of these observations (four algorithms)

1. Guess poles and obtain optimal zero locations

2. Start with a “good” T(s) obtained by any means and improve by selecting optimal 

zeros

3. Guess poles and then update estimates of both poles and zeros, use new 

estimate of poles and again update both zeros and poles, continue until 

convergence or stop after fixed number of iterations

4. Guess poles and obtain optimal zeros.  Then invert function and revise cost and 

obtain optimal zeros (which are actually poles).  Then invert again and obtain 

optimal zeros.  Process can be repeated.  - Weighting may be necessary to de-

emphasize stop-band values when working with the reciprocal function



Least Squares Approximations of Transfer Functions
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Comments/Observations about LMS approximations

1. As with collocation, there is no guarantee that TA(s) can be obtained from HA(ω2)

2. Closed-form analytical solutions exist for some useful mean square based cost functions

3. Any of the LMS cost functions discussed that have an analytical solution can have the terms 

weighted by a weight wi.  This weight will not change the functional form of the equations but 

will affect the fit

4. The best choice of sample frequencies is not obvious (both number and location)

5. The LMS cost function is not a natural indicator of filter performance

6. It is often used because more natural indicators are generally not mathematically tractable

7. The LMS approach may provide a good solution for some classes of applications but does not 

provide a universal solution



Least Squares Approximations of Transfer Functions
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Least Squares Approximations of Transfer Functions
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The LMS cost function is not a natural indicator of filter performance

What is a natural indicator of filter performance?

• Strongly dependent upon application

• System designer may specify a filter (e.g. BP) with certain 

characteristics without knowing what is really needed

e.g.   A filter in a PLL that is used for Clock and Data Recovery may affect 

capture time, lock time, and BER and those would be the metrics that 

should be used to determine filter requirements but relationship between 

pole and zero locations or magnitude or phase response of the filter and 

these metrics is generally not analytically tractable



Clock
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Clock and Data Recovery Example 

Ideal CDR situation
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PLL used to generate recovered sampling clock

Relationship between LF transfer function and BER ?



The Approximation Problem
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• Magnitude Squared Approximating Functions

• Inverse Transform

• Collocation

• Least Squares (Cost function minimization)

• Pade’ Approximations

• Other Analytical Optimization

• Numerical Optimization

• Canonical Approximations
→Butterworth (BW)

→Chebyschev (CC)

→Elliptic

→Bessel

→Thomson

Approach we will follow:
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Pade’ Approximations

(from Wikipedia)

Henri Eugène Padé (December 17, 1863 – July 9, 1953) was a French 

mathematician, who is now remembered mainly for his development of 

approximation techniques for functions using rational functions. 

The Pade’ approximations were discussed in his doctoral dissertation in 

approximately 1890

http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Approximation
http://en.wikipedia.org/wiki/Rational_function


Pade’ Approximations

( ) i

D i

i=0

T s = c s




( )
( )

( )
1

i

i

i=0
m,n

i

i

i=1

a s
A s

R s =
B s

b s

m

n
=

+





Consider the polynomial

The rational fraction Rm,n(s) is said to be a (m,n)th order Pade’ approximation of 

TD(s) if TD(s)B(s) agrees with A(s) through the first m+n+1 powers of s

Define the rational fraction Rm,n(s) by

Note the Pade’ approximation applies to any polynomial with the argument being 

either real, complex, or even an operator s

Can operate directly on functions in the s-domain



Pade’ Approximations
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Pade’ Approximations

( ) ...2 3

D

1 1
T s =1 + s + s + s

2! 3!

   
+   

   

Example

( )... 12 3 2 3 2

1 2 3 0 1 2

1 1
1 + s + s + s b s b s b s =a a s a s

2! 3!

    
+ + + + + +    

    

0a =1

1 1a =1+b
1

2!
2 1 2a =b b+ +

1
2 3

b 1
0=b b +

2 6
+ +

2 1
3

b b 1
0=b + +

2 6 24
+

3 2 1b b b 1
0= + + +

2 6 24 5!

1

2

3

0

1

2

b =-.6

b =.15

b =-.01666

a =1

a =0.4

a =.05



Pade’ Approximations

Example
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Im

T(s) has a pair of cc poles in the RHP and is thus unstable!

Poles can be reflected back into the LHP to obtain 

stability and maintain magnitude response

Re



Pade’ Approximations

( )AT s ( )2

AH ω

( )m,nR s ( )2

m,nR ω
?

If TA(s) is an all pole approximation, then the Pade’ approximation of 1/TA(s) 

is the reciprocal of the Pade’ approximation of TA(s)

Pade’ approximations can be made for either TA(s) or HA(ω2).

Is it better to do Pade’ approximations of TA(s) or HA(ω2)?

What relationship, if any, exists between                  and                ?  ( )m,nR s ( )m,nR s



Pade’ Approximations

• Useful for order reduction of all-pole or all-zero approximations

• Can map an all-zero approximation to a realizable rational fraction in the 

s-domain (all-zero approximations can be obtained using LMS approach)

• Can extend concept to provide order reduction of higher-order rational 

fraction approximations

• Can always maintain stability or even minimum phase by reflecting any 

RHP roots back into the LHP

• Pade’ approximation is heuristic (no metrics associated with the approach)

• No guarantees about how good the approximations will be



The Approximation Problem

1

1

ω

( )LPT j

• Magnitude Squared Approximating Functions

• Inverse Transform

• Collocation

• Least Squares (Cost function minimization)

• Pade’ Approximations

• Other Analytical Optimization

• Numerical Optimization

• Canonical Approximations
→Butterworth (BW)

→Chebyschev (CC)

→Elliptic

→Bessel

→Thomson

Approach we will follow:
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( ) ( )2

A AH ω T s→



Other Analytical Approximations

• Numerous analytical strategies have been 

proposed over the years for realizing a filter

• Some focus on other characteristics (phase, 

time-domain response, group delay)

• Almost all based upon real function 

approximations

• Remember – inverse mapping must exist if a 

useful function T(s) is to be obtained



Approximations

• Magnitude Squared Approximating Functions – HA(ω2)

• Inverse Transform - HA(ω2)→TA(s)

• Collocation

• Least Squares (Cost function minimization)

• Pade Approximations

• Other Analytical Optimizations

• Numerical Optimization

• Canonical Approximations
– Butterworth

– Chebyschev

– Elliptic

– Bessel

– Thomson



Numerical Optimization

• Optimization algorithms can be used to obtain approximations in 
either the s-domain or the real domain

• The optimization problem often has a large number of degrees of 
freedom (m+n+1)

• Need a good cost function to obtain good approximation

• Can work on either coefficient domain or root domain or other 
domains

• Rational fraction approximations inherently vulnerable to local 
minimums

• Can get very good results
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Stay Safe and Stay Healthy !



End of Lecture 8
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